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Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain
fluctuations show an Eshelby-strain pattern [∼ cos ð4θÞ=r2], characteristic of elastic response, even in
liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in
supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and
simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a
scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is
visible even on time scales longer than the structural relaxation time τ and after the shear modulus has
relaxed to zero.
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Glasses behave like isotropic elastic solids under exter-
nal loads. Their strain fields are long ranged as captured in
elasticity theory. Considering appropriate boundary con-
ditions, Eshelby obtained the elastic strain field surround-
ing an isolated local deformation [1], which is also the basis
for modern theories of plasticity in disordered solids [2]:
plastic deformation proceeds via localized irreversible
rearrangements coupled by elastic strain fields.
While the relevance of strain in glass at low temperatures

originates in the breaking of translational symmetry under-
lying solidification [3], the proper understanding of the
evolution of strains at the crossover from a metastable glass
to a supercooled liquid remains an old [4] yet open topic
[5]. The concept of plastic events, which are elastically
coupled, has emerged as one candidate rooted in the theory
of solids that aims to capture the glass transition from low
temperatures. It suggests that “supercooled liquids are
solids that flow” [6] and focuses on strain fluctuations
and their correlations to probe plastic flow.
Lemaître and colleagues found evidence for this concept

in molecular dynamics simulations of two-dimensional
Lennard-Jones mixtures: they observed persistent long-
ranged strain fluctuations in supercooled liquid states [7].
Because the time over which strains were accumulated
exceeds the structural relaxation time τ of the liquid,
observable elastic stresses have decayed. The observation
of spatial dependencies exhibiting a far-field Eshelby-strain
pattern thus cannot be a simple consequence of elasticity. It
suggests that particle rearrangements in a fluid interact over
large distances via strains likely in an underlying elastic
structure, the “inherent states” characterizing the potential
energy landscape [8].
Strain patterns have been observed experimentally, but

not yet in quiescent supercooled liquids. An anisotropic
decay of strain was found in a 3D colloidal hard sphere
glass under steady shear [9], in 2D simulations [10,11]

where long range correlations enhance phonon scattering
[12], and in granular matter [13]. Eshelby patterns are
reported in 2D flowing emulsions [14] and in a 3D colloidal
hard sphere glass, where they appear under shear and
thermally induced in a quiescent state [15]. They are also
present in 2D soft hexagonal crystals with dipolar inter-
action [16]. Simulations revealed Eshelby patterns in a 2D
flowing foam [17] and in a glass-forming mixture under
shear [18]. For a monodisperse fluid system in 2D of
particles with screened Coulomb interaction, these patterns
were observed in the short time regime due to the high
frequency shear modulus [19].
In this Letter, we present the first experimental evidence

for Eshelby-like strain patterns in quiescent supercooled
liquids and provide a theoretical description rooted in
theories of liquid dynamics. This establishes the dissipative
transport mechanism leading to long-ranged strain fluctua-
tions and identifies the spatial and temporal window where
they can be observed in supercooled states.
Monolayers of binary mixtures of dipolar colloids have

emerged as a model system for the study of the glass
transition by video microscopy [20]. The dipolar interac-
tion between colloids can be tuned by an external magnetic
field and the interaction parameter Γ (magnetic over
thermal energy) is precisely known; it may be considered
a dimensionless inverse temperature. Strain fields can be
determined from the particle trajectories in crystalline [21]
and amorphous [22] solids, and the shear modulus μ
could be measured [23]. Solutions of the mode-coupling
theory (MCT) provide theoretical results for the glass
transition [24].
The dynamics of the system shall be captured in the

average correlation of accumulated strains at two different
locations r1;2, Cαβγδðr1; r2; tÞ ¼ hΔεαβðr1; tÞΔεγδðr2; tÞi.
Here, εαβ is the familiar (linearized) strain tensor with
spatial indices α; β ∈ f1; 2g in two dimensions. It is
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obtained from the differences of particle positions accu-
mulated over the time span t [25]. Equilibrium averaging is
done with the Gibbs-Boltzmann distribution [26], and time-
translational invariance of the system is assumed and
experimentally achieved by careful equilibration for several
days up to weeks in between the measurements at different
temperatures (Γ). In a homogeneous system, the correla-
tions depend on the distance r ¼ r2 − r1 only. In an
isotropic system, the fourth rank tensor can be reduced
to two independent functions related to compressional and
shear deformations. Following Ref. [7], we focus on the
transverse element Cxyðr; tÞ ¼ Cxyxyðr; tÞ; more details can
be found in the Supplemental Material [27].
Figure 1 shows the measured transversal strain correla-

tions for a glass and a fluid state. They were obtained using
video microscopy on a binary colloidal monolayer [23]
following the analysis introduced in Ref. [25]. A brief
introduction of the experimental setup can be found in the

Supplemental Material [27] while an elaborate discussion is
given in Ref. [31]. Time is given in reduced units with D0n
the rate for the (unhindered) diffusion of a particle over the
average particle separation a ¼ 1=

ffiffiffi
n

p
, where n is the

particle density; D0 is the dilute diffusion coefficient.
One notices the angular dependence of the far-field strain,
which Eshelby obtained for the elastic distortion around a
localized disturbance at the origin [1,32]:

Cxyðr; tÞ → cos ð4θÞ C
sðtÞ

4πnr2
; for r ≫ a: ð1Þ

Four lobes of maximal intensity alternate with four lobes of
minimal intensity. The appropriate spherical harmonics
projection C4

4ðr; tÞ ¼ ð1=πÞ R 2π
0 dθ cosð4θÞCxyðr; tÞ decays

slowly at large separations r ≫ a, with a power law C4
4 ∝

r−k of exponent k ¼ 2 (see the dashed line in Fig. 1). This is
the classical result from continuum mechanics and linear
response theory (viz., the fluctuation dissipation theorem)
for the strain fluctuations in an isotropic solid. We find that
it holds for times beyond the short time local dynamics
(viz., nD0t⪆1) and for distances r larger than the average
particle separation a. The algebraic decay of hexadecupolar
symmetry follows from the fundamental equation of
elastostatics, which predicts for the amplitude of the
algebraic decay Csðt → ∞Þ ¼ 2kBTnð1=μ − 1=μ∥Þ. Here,
the elasticity seen in (volume-preserving) strain-
deformations is the hallmark of a solid and results from
a finite shear modulus μ. The longitudinal modulus μ∥,
which would be present in a fluid also, gives a (small)
correction in Cxy. The observation of a finite shear rigidity
is consistent with the interpretation that the colloidal layer
is in a solid state at low temperatures, viz., Γ > Γg ≈ 200,
where Γg is the inverse dimensionless glass transition
temperature obtained from the discontinuity in the elastic
moduli [23].
The measured spatial correlations of the strains persist in

fluid states at Γ ¼ 103 < Γg. At this temperature, approx-
imately 2 times higher than the glass transition temperature,
the averaged strain fluctuations exhibit spatial correlations
reminiscent of solids even for times far larger than the
structural relaxation time τ. The upper inset in Fig. 1 at
Γ ¼ 103 compares the times t where Eq. (1) holds with τ. It
is estimated from the decay of the density correlations with
the wavelength of the average particle separation [27]. The
relaxation time τ also characterizes the decay to zero of the
shear stress autocorrelation function, which indicates that
the fluid cannot sustain elastic shear stresses for such long
times [33]. Thus, we experimentally recover the intriguing
observation by Lemaître and colleagues that solidlike
Eshelby strain fields survive in supercooled fluids even
though density and stress correlations are fluidlike.
In order to understand the spatial strain correlations at the

glass transition, we turn to microscopic quantities, which
provide insights into fluid and solid states. The transversal

FIG. 1. Experimental rescaled strain correlation data for a glass
(upper panel, Γ ¼ 423) and a fluid (lower panel, Γ ¼ 103) state at
different times (see legends). The spherical harmonic strain
correlation functions C4

4ðr; tÞ=CsðtÞ are rescaled to overlap in
the far-field power-law decay. The main panels show the 1=rk

power-law decay (dashed black), with the exponent k ¼ 2
varying little with time (upper insets). The contour plots (lower
insets) of the long-time limit of Cxyðr; tÞ=Cxyðr ¼ 0; tÞ illustrate
the corresponding cos ð4θÞ symmetry; The Eshelby patterns are
shown at nD0t ¼ 30.1 (glass) and nD0t ¼ 3.1 > nD0τ (fluid),
respectively.
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collective mean-squared displacement (TCMSD) function
C⊥ðq; tÞ ¼ hΔu⊥�

q ðtÞΔu⊥
q ðtÞi can be obtained from the

particles’ displacements accumulated in the time interval t
[22]. The spatial Fourier transformation possible in homo-
geneous systems allows us to focus on shear fluctuations
perpendicular to the wave vector q. The TCMSD may be
considered a collective and spatially resolved generaliza-
tion of the single particle mean-squared displacement
familiar from liquid dynamics [26].
The transverse strain correlation function is given

by the inverse Fourier transformation: Cxyðr; tÞ ¼
FT−1f½ðq2x þ q2y=4Þ − ðq2xq2y=q2Þ�C⊥ðq; tÞ�gðrÞ, where the
q-dependent factors arise as strain is the symmetrized
gradient of the displacement field in linear order [34].
For simplicity of presentation, we assume an incompress-
ible system from now on, neglecting a longitudinal col-
lective mean-squared displacement C∥ðq; tÞ, and relegate
the complete theoretical analysis of compressible systems
to the Supplemental Material [27].
The overdamped equations of motion of the (complete

tensorial) collective mean-squared displacement were given
in Ref. [22]. They rest on (i) the link between the
displacement and velocity fluctuations _uq ¼ vq presumed
valid in fluid and solid states [35], and on (ii) results for
velocity correlations obtained by liquid theory [26].
Figure 2 shows typical curves for the TCMSD numerically
obtained employing approximations familiar from MCT in
order to evaluate the arising memory kernels [27]. The
calculation mimics a two-dimensional one-component
system of dipolar Brownian particles, which undergoes a
glass transition at ΓMCT

g ¼ 115 [24,37]. The curves exhibit

a scaling limit of generalized hydrodynamics for small
wave vectors, which is of central interest in order to obtain
the far-field strain behavior.
The generalized hydrodynamics appropriate in super-

cooled fluids is obtained from taking the limit of long
wavelength fluctuations qa ≪ 1 and keeping the possibil-
ity for slow dynamics [39]. Our result, obtained within the
Zwanzig-Mori projection operator formalism, describes
initially diffusive particle displacements growing linearly
in time (with D0 the dilute diffusion coefficient and the
friction coefficient ζ0 ¼ kBT=D0). With increasing time the
diffusive displacements get hindered by interactions cap-
tured in a retarded friction kernel:

C⊥
GHðq; tÞ þ

q2

ζ0n

Z
t

0

dt0G⊥ðt − t0ÞC⊥
GHðq; t0Þ ¼ 2D0t; ð2Þ

where the subscript GH stands for generalized hydro-
dynamics. The memory kernel contains the potential shear
stresses: G⊥ðtÞ ¼ ðn=kBTÞhσ⊥ðtQÞ�σ⊥i. Its prefactor q2

results from Newton’s second law, that forces are trans-
mitted among the particles and sum up to zero in total.
G⊥ðtÞ is familiar from the theory of transversal momentum
fluctuations in liquids, and its integral gives the shear
viscosity according to the Green-Kubo relation [26]:
η ¼ R∞

0 dtG⊥ðtÞ. It differs from the stress autocorrelation
function in a solid [40].
The equation of motion for the transversal collective

mean-squared displacements contains a length L defined
via ðqLÞ2 ¼ ðq2η=nζ0Þ, which determines the behavior at
long times [41]. In the normal hydrodynamic description of
a liquid, the limit of a small wave vector is taken, which
leads to qL ≪ 1. Then, the displacements grow diffusively
for all times, C⊥

GHðq ≪ 1=L; tÞ ¼ 2D0t, and the strain
correlation function Cxyðr; tÞ decays on local distances.
Not surprisingly, an equilibrium liquid does not support
long-ranged strain correlations as present in elastic
systems. The crossover to simple hydrodynamics happens
at q < 1=L, with L of the order of the average particle
distance a in low-viscous fluids [42]: L=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=ðζ0na2Þ

p
(which is

ffiffiffiffiffiffiffiffiffi
η=ζ0

p
in two dimensions). This wave vector also

limits the range where transversal sound waves are seen in
supercooled molecular systems [43,44]. In a glass, strain
fluctuations are tested at times t shorter than τ before the
stresses have relaxed. Then, the shear stress memory kernel
takes the value of the shear modulus μ [22], and the
variance of the displacements increases with wave vector
like a power law: C⊥

GHðq; t ≪ τÞ ¼ ð2kBTn=μq2Þ. The
small-q divergence of the variance of the displacements
is the origin of the far-field power law in Eshelby’s result.
Equation (1) holds with CsðtÞ ¼ 2kBTn=μ.
The increase of the viscosity opens an additional

spatiotemporal window, where the shear modulus has
decayed to zero, yet the displacements still diverge

FIG. 2. Transversal collective mean-squared displacements
C⊥ðq; tÞ from MCT for various wave vectors q as labeled and
for three different values of Γ. While Γ ¼ 107 and 114 are fluid
states, Γ ¼ 118 is a glass in this one-component dipolar system.
The inset shows that for wave vectors qa ≪ 1 the 1=q2 behavior
(gray solid line) predicted by the generalized hydrodynamics
result C⊥

GHðq; tÞ → CsðtÞ=q2 from Eq. (3) is approached at long
times for both the glass and fluid. Since the three curves collapse
for qa ≪ 1 the fluid curves are shifted by a factor of 2 and 4,
respectively, for visibility.
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with q−2. This “supercooled liquid” regime is charac-
terized by t ≫ τ and qL ≫ 1, which requires high
values of the viscosity. Then, the TCMSD obeys
C⊥
GHðq ≫ 1=L; t ≫ τÞ ¼ ð2kBTn=ηq2Þt, and the strain cor-

relation function exhibits the spatial behavior reminiscent
of solidlike behavior, Cxyðr; tÞ → cos 4θð2kBTt=ηr2Þ. Yet,
the coefficient of the spatial power law is viscous and not
elastic. The long-ranged correlation of strains arises from
momentum conservation during the particle interactions,
which causes the slow collective transport of momentum in
the viscoelastic particle system to dominate over the local
friction intrinsic in the Langevin description [45]: ðqLÞ2 ¼
ðq2η=nÞ=ðζ0Þ ≫ 1.
The glass and supercooled regimes of the strain fluctua-

tions can be summarized in a scaling law [47]. The
coefficient CsðtÞ of the far-field strain decay in Eq. (1)
can be obtained from a limiting solution of Eq. (2) valid for
qL ≫ 1 and tD0n ≫ 1 in incompressible systems:

C⊥
GHðq; tÞ →

CsðtÞ
q2

with CsðtÞ →
( 2kBTn

μ ; t ≪ τ;

2kBTnt
η ; t ≫ τ:

ð3Þ

The equation for CsðtÞ follows from Eq. (2) by neglecting
the first term. The ansatz of an exponentially decaying
memory kernel G⊥ ¼ μe−t=τ would capture both asymp-
totes on the right-hand side of Eq. (3): in analogy to a
Maxwell fluid under load, μ would appear for short times
and η=t for long ones.
Figure 3 contains the measured CsðtÞ obtained from the

real-space analysis considering the far-field power-law
decay of the strain correlations shown in Fig. 1 [27].
Additional data sets around the glass transition (inverse)
temperature Γg ≈ 200 are added. In the lower panel, CsðtÞ
data obtained identically from Brownian dynamics (BD)
simulations of binary hard disks are shown. The system’s
glass transition packing fraction lies at ϕg ≈ 0.795 [49].
The measured data from experiment and simulation quali-
tatively agree and exhibit the predicted behaviors. Over a
time window increasing when approaching the glass
transition, the far-field amplitude CsðtÞ is arrested on a
constant value as corresponds to elastic solidlike behavior.
The elastic moduli determined independently closely match
the plateau values during the intermediate time window. In
fluid states, the far-field amplitude increases for long times
asymptotically linearly in time with a prefactor given by the
inverse viscosity, or equivalently the final relaxation time τ.
Rescaling CsðtÞ during this final process using τ obtained
a priori from the density correlation functions (see the
Supplemental Material [27]) gives a satisfactory collapse
of the curves in fluid states, see the insets of Fig. 3. The
BD data would collapse far better if replotted versus nDLt
(not shown), where DL is the long-time self-diffusion

coefficient. This may indicate that the strain fluctuations
decouple from the structural relaxation as is familiar for
diffusion, which is often taken as an indication for
heterogeneous dynamics [50].
In summary, we have shown that hexadecupolar

Eshelby-strain correlations, which are reminiscent of stan-
dard elastic behavior, can also be detected in an experiment
for a supercooled fluid when the shear elasticity has already
decayed to zero in the long-time limit. An analysis of the
retarded averaged strain fluctuation functions within the
framework of mode-coupling theory can explain this: for
sufficiently large viscosities an additional spatiotemporal
window opens where correlated displacements diverge with
length scales squared (q−2) while elastic correlations have

FIG. 3. Amplitude function CsðtÞ of the far-field power-law
decay of transversal strain correlations given in Eq. (1). It gives
the strength of the algebraic 1=r2 power-law decay with cos ð4θÞ
symmetry in Cxyðr; tÞ, which holds for a ≪ r ≪ L according to
Eq. (3). The upper panel gives data measured in the colloidal
layers, the lower panel gives the corresponding data measured by
BD simulations in a binary mixture of hard disks [27]. The
legends give the inverse temperatures Γ or the packing fractions ϕ
spanning from the fluid to glass states. The circles mark the times
where Eshelby-strain patterns are shown in the inset of Fig. 1 (and
Fig. 5 in the Supplemental Material [27]). The dashed lines give
the elastic limits Csðt → ∞Þ ¼ 2kBTnð1=μ − 1=μ∥Þ with the
moduli obtained from the dispersion relations following Ref. [22].
The insets show the asymptotic collapse of the fluid curves when
plotted versus the rescaled time t=τ with the final relaxation times
τ obtained from density correlation functions [27].
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already decayed. The origin of the long-ranged strain
fluctuations is the conservation of momentum in the
particle interactions. This derivation within the generalized
hydrodynamics of supercooled liquids opens the perspec-
tive to connect to the theories of plastic flow in low-
temperature glasses. For example, the connection of our
viscoelastic scaling law to inherent structures remains to be
established and promises insights into the dynamics on the
potential energy landscape at high temperatures [51]. While
for long times and large distances, flow and elastic
processes cause similar patterns, differences might be
detectable at short scales. Our theoretical results in
Fourier space hold in two and three dimensions, and
rationalize data from colloidal layers, even though com-
puter simulations of single particle motion indicated that
localization in two-dimensional glasses is rather weak [52].
Accordingly, our simulations require large systems in order
to observe the far-field behavior.
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